Clinical Genitourinary Cancer
Authors
Jack VW Bacon, Matti Annala, Maryam Soleimani, Jean-Michel Lavoie, Alan So, Martin E Gleave, Ladan Fazli, Gang Wang, Kim N Chi, Christian K Kollmannsberger, Alexander W Wyatt, Lucia Nappi
Publication Abstract

Background: There is a lack of molecularly-informed biomarkers for patients with metastatic renal cell carcinoma (RCC). Plasma cell-free DNA (cfDNA) sequencing is a minimally-invasive alternative to tissue for profiling the genome in other cancers but relevance in metastatic RCC remains unclear.

Materials and methods: Whole blood was collected from 55 patients with metastatic RCC. Plasma cfDNA and leukocyte DNA were subjected to targeted sequencing across 981 cancer genes. Matched tumor tissue from 14 patients was analyzed.

Results: Thirty-three percent of patients had evidence for RCC-derived circulating tumor DNA (ctDNA), significantly lower than patients with metastatic prostate or bladder cancer analyzed using the same approach. Among ctDNA-positive patients, ctDNA fraction averaged only 3.9% and showed no strong association with clinical variables. In these patients, the most commonly mutated genes were VHL, BAP1, and PBRM1, and matched tissue concordance was 77%. Evidence of somatic expansions unrelated to RCC, such as clonal hematopoiesis of indeterminate potential, were detected in 43% of patients. Pathogenic germline mutations in DNA repair genes were detected in 11% of patients. CtDNA-positive patients had shorter overall survival and progression-free survival on first-line therapy. Patients with evidence of clonal hematopoiesis of indeterminate potential had an intermediate prognosis compared with ctDNA-positive and -negative patients.

Conclusions: CfDNA sequencing enables straightforward characterization of the somatic RCC genome in a minority of patients with metastatic RCC. Owing to low ctDNA abundance, and the presence of non-RCC derived somatic clones in circulation, cfDNA sequencing may not be a simple pan-patient alternative to tissue biopsy in metastatic RCC.

EMBO reports, 2019
Authors
El-Naggar, Amal M, Somasekharan, Syam Prakash, Wang, Yemin, Cheng, Hongwei, Negri, Gian Luca, Pan, Melvin, Wang, Xue Qi, Delaidelli, Alberto, Rafn, Bo, Cran, Jordan, Zhang, Fan, Zhang, Haifeng, Colborne, Shane, Gleave, Martin, Mandinova, Anna, Kedersha, Nancy, Hughes, Christopher S, Surdez, Didier, Delattre, Olivier, Wang, Yuzhuo, Huntsman, David G, Morin, Gregg B, Sorensen, Poul H
Publication Abstract
Outcomes for metastatic Ewing sarcoma and osteosarcoma are dismal and have not changed for decades. Oxidative stress attenuates melanoma metastasis, and melanoma cells must reduce oxidative stress to metastasize. We explored this in sarcomas by screening for oxidative stress sensitizers, which identified the class I HDAC inhibitor MS-275 as enhancing vulnerability to reactive oxygen species (ROS) in sarcoma cells. Mechanistically, MS-275 inhibits YB-1 deacetylation, decreasing its binding to 5'-UTRs of NFE2L2 encoding the antioxidant factor NRF2, thereby reducing NFE2L2 translation and synthesis of NRF2 to increase cellular ROS. By global acetylomics, MS-275 promotes rapid acetylation of the YB-1 RNA-binding protein at lysine-81, blocking binding and translational activation of NFE2L2, as well as known YB-1 mRNA targets, HIF1A, and the stress granule nucleator, G3BP1. MS-275 dramatically reduces sarcoma metastasis in vivo, but an MS-275-resistant YB-1K81-to-alanine mutant restores metastatic capacity and NRF2, HIF1α, and G3BP1 synthesis in MS-275-treated mice. These studies describe a novel function for MS-275 through enhanced YB-1 acetylation, thus inhibiting YB-1 translational control of key cytoprotective factors and its pro-metastatic activity.

ACS pharmacology & translational science, 2019
Authors
Obst, Jon K, Wang, Jun, Jian, Kunzhong, Williams, David E, Tien, Amy H, Mawji, Nasrin, Tam, Teresa, Yang, Yu Chi, Andersen, Raymond J, Chi, Kim N, Montgomery, Bruce, Sadar, Marianne D
Publication Abstract
Inhibition of the androgen receptor (AR) is the mainstay treatment for advanced prostate cancer. Ralaniten (formally EPI-002) prevents AR transcriptional activity by binding to its N-terminal domain (NTD) which is essential for transcriptional activity. Ralaniten acetate (EPI-506) the triacetate pro-drug of ralaniten, remains the only AR-NTD inhibitor to have entered clinical trials (NCT02606123). While well tolerated, the trial was ultimately terminated due to poor pharmacokinetic properties and resulting pill burden. Here we discovered that ralaniten was glucuronidated which resulted in decreased potency. Long-term treatment of prostate cancer cells with ralaniten results in upregulation of UGT2B enzymes with concomitant loss of potency. This has proven to be a useful model with which to facilitate the development of more potent second-generation AR-NTD inhibitors. Glucuronidated metabolites of ralaniten were also detected in the serum of patients in Phase 1 clinical trials. Therefore, we tested an analogue of ralaniten (EPI-045) which was resistant to glucuronidation and demonstrated superiority to ralaniten in our resistant model. These data support that analogues of ralaniten designed to mitigate glucuronidation may optimize clinical responses to AR-NTD inhibitors.

Cell, 2019
Authors
Laks, Emma, McPherson, Andrew, Zahn, Hans, Lai, Daniel, Steif, Adi, Brimhall, Jazmine, Biele, Justina, Wang, Beixi, Masud, Tehmina, Ting, Jerome, Grewal, Diljot, Nielsen, Cydney, Leung, Samantha, Bojilova, Viktoria, Smith, Maia, Golovko, Oleg, Poon, Steven, Eirew, Peter, Kabeer, Farhia, Ruiz de Algara, Teresa, Lee, So Ra, Taghiyar, M Jafar, Huebner, Curtis, Ngo, Jessica, Chan, Tim, Vatrt-Watts, Spencer, Walters, Pascale, Abrar, Nafis, Chan, Sophia, Wiens, Matt, Martin, Lauren, Scott, R Wilder, Underhill, T Michael, Chavez, Elizabeth, Steidl, Christian, Da Costa, Daniel, Ma, Yussanne, Coope, Robin J N, Corbett, Richard, Pleasance, Stephen, Moore, Richard, Mungall, Andrew J, Mar, Colin, Cafferty, Fergus, Gelmon, Karen, Chia, Stephen, , , Marra, Marco A, Hansen, Carl, Shah, Sohrab P, Aparicio, Samuel
Publication Abstract
Accurate measurement of clonal genotypes, mutational processes, and replication states from individual tumor-cell genomes will facilitate improved understanding of tumor evolution. We have developed DLP+, a scalable single-cell whole-genome sequencing platform implemented using commodity instruments, image-based object recognition, and open source computational methods. Using DLP+, we have generated a resource of 51,926 single-cell genomes and matched cell images from diverse cell types including cell lines, xenografts, and diagnostic samples with limited material. From this resource we have defined variation in mitotic mis-segregation rates across tissue types and genotypes. Analysis of matched genomic and image measurements revealed correlations between cellular morphology and genome ploidy states. Aggregation of cells sharing copy number profiles allowed for calculation of single-nucleotide resolution clonal genotypes and inference of clonal phylogenies and avoided the limitations of bulk deconvolution. Finally, joint analysis over the above features defined clone-specific chromosomal aneuploidy in polyclonal populations.

The Journal of pathology, 2019
Authors
Negri, Gian Luca, Grande, Bruno M, Delaidelli, Alberto, El-Naggar, Amal, Cochrane, Dawn, Lau, Ching C, Triche, Timothy J, Moore, Richard A, Jones, Steven Jm, Montpetit, Alexandre, Marra, Marco A, Malkin, David, Morin, Ryan D, Sorensen, Poul H
Publication Abstract
Despite being the most common childhood bone tumor, the genomic characterization of osteosarcoma remains incomplete. In particular, very few osteosarcoma metastases have been sequenced to date, critical to better understand mechanisms of progression and evolution in this tumor. We performed an integrated whole genome and exome sequencing analysis of paired primary and metastatic pediatric osteosarcoma specimens to identify recurrent genomic alterations. Sequencing of 13 osteosarcoma patients including 13 primary, 10 metastatic, and 3 locally recurring tumors revealed a highly heterogeneous mutational landscape, including cases of hypermutation and microsatellite instability positivity, but with virtually no recurrent alterations except for mutations involving the tumor suppressor genes RB1 and TP53. At the germline level, we detected alterations in multiple cancer related genes in the majority of the cohort, including those potentially disrupting DNA damage response pathways. Metastases retained only a minimal number of short variants from their corresponding primary tumors, while copy number alterations showed higher conservation. One recurrently amplified gene, KDR, was highly expressed in advanced cases and associated with poor prognosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Bioinformatics (Oxford, England), 2019
Authors
Jackman, Shaun D, Mozgacheva, Tatyana, Chen, Susie, O'Huiginn, Brendan, Bailey, Lance, Birol, Inanc, Jones, Steven J M
Publication Abstract
The ORCA bioinformatics environment is a Docker image that contains hundreds of bioinformatics tools and their dependencies. The ORCA image and accompanying server infrastructure provide a comprehensive bioinformatics environment for education and research. The ORCA environment on a server is implemented using Docker containers, but without requiring users to interact directly with Docker, suitable for novices who may not yet have familiarity with managing containers. ORCA has been used successfully to provide a private bioinformatics environment to external collaborators at a large genome institute, for teaching an undergraduate class on bioinformatics targeted at biologists, and to provide a ready-to-go bioinformatics suite for a hackathon. Using ORCA eliminates time that would be spent debugging software installation issues, so that time may be better spent on education and research.

Cancers, 2019
Authors
Ho, Cally J, Gorski, Sharon M
Publication Abstract
Despite advances in diagnostic tools and therapeutic options, treatment resistance remains a challenge for many cancer patients. Recent studies have found evidence that autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation and recycling, contributes to treatment resistance in different cancer types. A role for autophagy in resistance to chemotherapies and targeted therapies has been described based largely on associations with various signaling pathways, including MAPK and PI3K/AKT signaling. However, our current understanding of the molecular mechanisms underlying the role of autophagy in facilitating treatment resistance remains limited. Here we provide a comprehensive summary of the evidence linking autophagy to major signaling pathways in the context of treatment resistance and tumor progression, and then highlight recently emerged molecular mechanisms underlying autophagy and the p62/KEAP1/NRF2 and FOXO3A/PUMA axes in chemoresistance.

Bioinformatics (Oxford, England), 2019
Authors
Warren, René L, Coombe, Lauren, Mohamadi, Hamid, Zhang, Jessica, Jaquish, Barry, Isabel, Nathalie, Jones, Steven J M, Bousquet, Jean, Bohlmann, Joerg, Birol, Inanç
Publication Abstract
In the modern genomics era, genome sequence assemblies are routine practice. However, depending on the methodology, resulting drafts may contain considerable base errors. Although utilities exist for genome base polishing, they work best with high read coverage and do not scale well. We developed ntEdit, a Bloom filter-based genome sequence editing utility that scales to large mammalian and conifer genomes.

Cell reports, 2019
Authors
Chun, Hye-Jung E, Johann, Pascal D, Milne, Katy, Zapatka, Marc, Buellesbach, Annette, Ishaque, Naveed, Iskar, Murat, Erkek, Serap, Wei, Lisa, Tessier-Cloutier, Basile, Lever, Jake, Titmuss, Emma, Topham, James T, Bowlby, Reanne, Chuah, Eric, Mungall, Karen L, Ma, Yussanne, Mungall, Andrew J, Moore, Richard A, Taylor, Michael D, Gerhard, Daniela S, Jones, Steven J M, Korshunov, Andrey, Gessler, Manfred, Kerl, Kornelius, Hasselblatt, Martin, Frühwald, Michael C, Perlman, Elizabeth J, Nelson, Brad H, Pfister, Stefan M, Marra, Marco A, Kool, Marcel
Publication Abstract
Extra-cranial malignant rhabdoid tumors (MRTs) and cranial atypical teratoid RTs (ATRTs) are heterogeneous pediatric cancers driven primarily by SMARCB1 loss. To understand the genome-wide molecular relationships between MRTs and ATRTs, we analyze multi-omics data from 140 MRTs and 161 ATRTs. We detect similarities between the MYC subgroup of ATRTs (ATRT-MYC) and extra-cranial MRTs, including global DNA hypomethylation and overexpression of HOX genes and genes involved in mesenchymal development, distinguishing them from other ATRT subgroups that express neural-like features. We identify five DNA methylation subgroups associated with anatomical sites and SMARCB1 mutation patterns. Groups 1, 3, and 4 exhibit cytotoxic T cell infiltration and expression of immune checkpoint regulators, consistent with a potential role for immunotherapy in rhabdoid tumor patients.

Nature communications, 2019
Authors
Sharma, Govinda, Rive, Craig M, Holt, Robert A
Publication Abstract
Cytotoxic CD8{{sup}}+{{/sup}} T cells recognize and eliminate infected or malignant cells that present peptide epitopes derived from intracellularly processed antigens on their surface. However, comprehensive profiling of specific major histocompatibility complex (MHC)-bound peptide epitopes that are naturally processed and capable of eliciting a functional T cell response has been challenging. Here, we report a method for deep and unbiased T cell epitope profiling, using in vitro co-culture of CD8{{sup}}+{{/sup}} T cells together with target cells transduced with high-complexity, epitope-encoding minigene libraries. Target cells that are subject to cytotoxic attack from T cells in co-culture are isolated prior to apoptosis by fluorescence-activated cell sorting, and characterized by sequencing the encoded minigenes. We then validate this highly parallelized method using known murine T cell receptor/peptide-MHC pairs and diverse minigene-encoded epitope libraries. Our data thus suggest that this epitope profiling method allows unambiguous and sensitive identification of naturally processed and MHC-presented peptide epitopes.
Back to top