
Trans-ABySS v1.0: User Manual

13 October 2010

Prepared by:
Readman Chiu, Rong She, Hisanaga Mark Okada, Gordon Robertson, Shaun
Jackman, Jenny Qian

On behalf of:
Gordon Robertson, Jacqueline Schein, Readman Chiu, Richard Corbett, Matthew
Field, Shaun D Jackman, Karen Mungall, Sam Lee, Hisanaga Mark Okada, Jenny Q
Qian, Malachi Griffith, Anthony Raymond, Nina Thiessen, Timothee Cezard, Yaron S
Butterfield, Richard Newsome, Simon K Chan, Rong She, Richard Varhol, Baljit Kamoh,
Anna-Liisa Prabhu, Angela Tam, YongJun Zhao, Richard A Moore, Martin Hirst, Marco A
Marra, Steven J M Jones, Pamela A Hoodless & Inanc Birol

Genome Sciences Centre, BC Cancer Agency
Vancouver, BC, Canada V5Z 4S6

Contact: Readman Chiu (rchiu@bcgsc.ca)

User forum: http://groups.google.com/group/trans-abyss?hl=en

Table of contents

ABySS and Trans-ABySS
Licenses
Getting ABySS
Getting Trans-ABySS

Download
Unpacking

Configuration
Trans-ABySS Software
External software
Configuration files
Input file
Transcript annotations and genome sequence

Assembling and analyzing transcriptome data
Trans-ABySS pipeline overview
ABySS assemblies and folder structure
Trans-ABySS folder structure
Run Trans-ABySS pipeline

Setting up contigs for analysis
Contig and read alignments

Read alignments to contigs
Contig alignments to a reference genome
Aligning reads to a reference genome

Transcriptome assembly analysis
Identify candidate novel transcript structures
Estimate gene-level expression
Identify candidate gene fusion events
Identify candidate SNVs and indels
Identify candidate polyadenylation sites

Datesets
Large
Small

Insr_UTR
Polyadenylation site analysis

References

ABySS and Trans-ABySS

ABySS is a de Bruijn graph-based short-read assembler that can process
genome or transcriptome sequence data (Simpson et al. 2009, Birol et al. 2009).

Trans-ABySS is an analysis pipeline for post-processing ABySS assemblies of
transcriptome sequencing data. It addresses varying transcript expression levels
by processing multiple assemblies across a range of k values (Robertson et al.
2010).

The v1.0 pipeline can map assembled contigs to annotated transcripts (e.g.
RefSeq, Ensembl,...), and can identify candidate novel splicing events such
as exon-skipping, novel exons, retained introns, novel introns, and alternative
splicing. It can also extract candidate SNVs, INDELs, and gene fusion events
from contig alignment data.

The Trans-ABySS pipeline consists of a) Perl wrapper scripts; b) Python, Perl
and bash scripts; and c) command line applications. The pipeline can be run on
any Linux platform. Processing large datasets will require a computer cluster.

Licenses
ABySS and Trans-ABySS are released under the terms of the BC Cancer
Agency software license agreement. http://www.bcgsc.ca/platform/bioinfo/

license/bcca_2010

Getting ABySS
The Trans-ABySS pipeline will process outputs from ABySS v1.1.2+. ABySS
v1.1.1 was used for the Nature Methods publication. Source code for v1.1.1 and
for the most current release of ABySS is available at:

www.bcgsc.ca/platform/bioinfo/software/abyss

The ABySS-users discussion group is available at:

http://groups.google.com/group/abyss-users

Getting Trans-ABySS

1. Download
The pipeline software can be downloaded from:
http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss

2. Unpacking
After unpacking, files will be automatically organized into five folders:

analysis Contains Python modules and Perl scripts that are used for

analyzing ABySS-assembled transcriptome assemblies.
annotations

Contains transcript and repeat annotation files used in analysis.
It is organized by reference genome assembly (e.g. hg18, mm9,
etc).

configs Contains configuration files (.cfg) that are used for running the
trans-ABySS pipeline.

utilities Contains Python modules (.py) and ABySS-related binaries that
support the analysis modules.

wrappers Contains Perl scripts (.pl) that are wrappers for running the Trans-
ABySS pipeline.

sample_data Contains a small sample dataset that can be used for testing

http://groups.google.com/group/abyss-users
http://groups.google.com/group/abyss-users
http://groups.google.com/group/abyss-users
http://groups.google.com/group/abyss-users
http://groups.google.com/group/abyss-users
http://groups.google.com/group/abyss-users
http://groups.google.com/group/abyss-users
http://groups.google.com/group/abyss-users
http://groups.google.com/group/abyss-users
http://groups.google.com/group/abyss-users
http://groups.google.com/group/abyss-users
http://groups.google.com/group/abyss-users
http://groups.google.com/group/abyss-users

Configuration

1. Trans-ABySS Software
Most of the software is written in Python. Because Trans-ABySS uses Pysam
(http://code.google.com/p/pysam/) to parse .sam files, Python 2.6 or later is
required.

The wrapper scripts for running the pipeline are written in Perl. All Perl5 versions
should work. To use the wrappers, you must add to the Perl path a simple
custom configuration module for parsing config files. This module is supplied in
the “wrappers” folder.

By setting the following environmental variables you should be ready to run the
Trans-ABySS software:

export TRANSABYSS_PATH=/home/user/trans-ABySS
export PYTHONPATH=.:$PYTHONPATH:$TRANSABYSS_PATH
export PERL5LIB=.:$PERL5LIB:$TRANSABYSS_PATH/wrappers

In addition, the reference genomes and their annotations that are used in
analysis should be present in the "annotations" folder. The current trans-
ABySS package comes with annotation files for two reference genomes: “hg18”
and “mm9”. For analysis on other genomes, please set up their annotation
folders in the same fashion.

For each reference genome, there should be a "genome.fa" in its corresponding
folder. For convenience, a “setup” file is included in the trans-ABySS root folder,
which includes the setup of the environmental variables and download genome
files from UCSC web site. Change the “TRANSABYSS_PATH” to your own
trans-ABySS directory. Then type “source setup” at the command line.

The ‘External software’ section (below) lists other required software.

2. External Software
In addition to Python and Perl, Trans-ABySS requires the following:

1. Blat (http://users.soe.ucsc.edu/~kent/src/)

Blat is used for:
1. Merging: pairwise alignment of contigs to remove redundant contigs.
2. Aligning contigs to a reference genome.

2. Pysam (http://code.google.com/p/pysam/)

http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://www.google.com/url?q=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc%2F&sa=D&sntz=1&usg=AFQjCNE5NJ83wtCFEZOMAujdqUmUnitNUA
http://code.google.com/p/pysam/
http://code.google.com/p/pysam/
http://code.google.com/p/pysam/
http://code.google.com/p/pysam/
http://code.google.com/p/pysam/
http://code.google.com/p/pysam/
http://code.google.com/p/pysam/
http://code.google.com/p/pysam/
http://code.google.com/p/pysam/
http://code.google.com/p/pysam/
http://code.google.com/p/pysam/
http://code.google.com/p/pysam/

Pysam is used for parsing .bam files for parsing read-to-contig alignments.

3. BioPython (http://www.biopython.org/wiki/Download)

Biopython is used in two parts of Trans-ABySS analysis:

1. Translating DNA sequence into peptide sequence for identifying
potential open reading frames.

2. The “NCBIStandalone.py" module is used for parsing Blast-format
output from Blat to extract candidate single nucleotide variants (SNVs)
and insertion-deletions (indels). After downloading the module, edit the
following line in so that HSPs of all scores will be parsed:

r"Score =\s*([0-9.e+]+) bits \(([0-9]+)\)", line,

should be changed to:

r"Score =\s*([0-9.e+-]+) bits \(([0-9-]+)\)", line,

4. Samtools (http://samtools.sourceforge.net/)

Samtools is used for merging and indexing read alignment files.

5. Bowtie (http://bowtie-bio.sourceforge.net/index.shtml)

Bowtie is used in single-end alignment for aligning reads to contigs.

6. The CPAN Perl module Config::General and IO::Compress

http://search.cpan.org/~tlinden/Config-General-2.49/General.pm
http://search.cpan.org/~pmqs/IO-Compress-2.030/lib/IO/Uncompress/

Gunzip.pm
IO::Compress is only required if the input reads are gzipped or bzipped.
These Perl modules are used by the polyadenylation site scripts.

7. BWA (http://bio-bwa.sourceforge.net/bwa.shtml)

BWA is used to align PAM and EJ reads to known transcript sequences in
the polyadenylation site analysis.

3. Configuration files
Trans-ABySS analyses are performed on individual libraries, i.e. short-read
sequencing datasets. However, to support work on a project that involves
multiple related libraries (e.g. tens of patients for a disease), sets of libraries can

http://www.google.com/url?q=http%3A%2F%2Fwww.biopython.org%2Fwiki%2FDownload&sa=D&sntz=1&usg=AFQjCNGvEHg3fuZFf21BEjK2zBARjH-RSA
http://www.google.com/url?q=http%3A%2F%2Fwww.biopython.org%2Fwiki%2FDownload&sa=D&sntz=1&usg=AFQjCNGvEHg3fuZFf21BEjK2zBARjH-RSA
http://www.google.com/url?q=http%3A%2F%2Fwww.biopython.org%2Fwiki%2FDownload&sa=D&sntz=1&usg=AFQjCNGvEHg3fuZFf21BEjK2zBARjH-RSA
http://www.google.com/url?q=http%3A%2F%2Fwww.biopython.org%2Fwiki%2FDownload&sa=D&sntz=1&usg=AFQjCNGvEHg3fuZFf21BEjK2zBARjH-RSA
http://www.google.com/url?q=http%3A%2F%2Fwww.biopython.org%2Fwiki%2FDownload&sa=D&sntz=1&usg=AFQjCNGvEHg3fuZFf21BEjK2zBARjH-RSA
http://www.google.com/url?q=http%3A%2F%2Fwww.biopython.org%2Fwiki%2FDownload&sa=D&sntz=1&usg=AFQjCNGvEHg3fuZFf21BEjK2zBARjH-RSA
http://www.google.com/url?q=http%3A%2F%2Fwww.biopython.org%2Fwiki%2FDownload&sa=D&sntz=1&usg=AFQjCNGvEHg3fuZFf21BEjK2zBARjH-RSA
http://www.google.com/url?q=http%3A%2F%2Fwww.biopython.org%2Fwiki%2FDownload&sa=D&sntz=1&usg=AFQjCNGvEHg3fuZFf21BEjK2zBARjH-RSA
http://www.google.com/url?q=http%3A%2F%2Fwww.biopython.org%2Fwiki%2FDownload&sa=D&sntz=1&usg=AFQjCNGvEHg3fuZFf21BEjK2zBARjH-RSA
http://www.google.com/url?q=http%3A%2F%2Fwww.biopython.org%2Fwiki%2FDownload&sa=D&sntz=1&usg=AFQjCNGvEHg3fuZFf21BEjK2zBARjH-RSA
http://www.google.com/url?q=http%3A%2F%2Fwww.biopython.org%2Fwiki%2FDownload&sa=D&sntz=1&usg=AFQjCNGvEHg3fuZFf21BEjK2zBARjH-RSA
http://www.google.com/url?q=http%3A%2F%2Fsamtools.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNGrESuio1DP0kLrO7sAWvRiRfYI4g
http://www.google.com/url?q=http%3A%2F%2Fsamtools.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNGrESuio1DP0kLrO7sAWvRiRfYI4g
http://www.google.com/url?q=http%3A%2F%2Fsamtools.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNGrESuio1DP0kLrO7sAWvRiRfYI4g
http://www.google.com/url?q=http%3A%2F%2Fsamtools.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNGrESuio1DP0kLrO7sAWvRiRfYI4g
http://www.google.com/url?q=http%3A%2F%2Fsamtools.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNGrESuio1DP0kLrO7sAWvRiRfYI4g
http://www.google.com/url?q=http%3A%2F%2Fsamtools.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNGrESuio1DP0kLrO7sAWvRiRfYI4g
http://www.google.com/url?q=http%3A%2F%2Fsamtools.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNGrESuio1DP0kLrO7sAWvRiRfYI4g
http://www.google.com/url?q=http%3A%2F%2Fsamtools.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNGrESuio1DP0kLrO7sAWvRiRfYI4g
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fbowtie-bio.sourceforge.net%2Findex.shtml&sa=D&sntz=1&usg=AFQjCNGC82trCCOFaY3on5rQMJZW66ZnoQ
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~tlinden%2FConfig-General-2.49%2FGeneral.pm&sa=D&sntz=1&usg=AFQjCNGTtsX0akhdrIYEr3fjnOU63aOsPw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fsearch.cpan.org%2F~pmqs%2FIO-Compress-2.030%2Flib%2FIO%2FUncompress%2FGunzip.pm&sa=D&sntz=1&usg=AFQjCNFLOP_-6SnZFzIvgqP2cZkmq-PLcw
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A
http://www.google.com/url?q=http%3A%2F%2Fbio-bwa.sourceforge.net%2Fbwa.shtml&sa=D&sntz=1&usg=AFQjCNEtIbpUa34VFMNc3VrBfdD0kWqX7A

be organized under a common project directory, and can share common run
configuration settings. Settings are specified in configuration files, as follows.

The wrapper scripts use the following configuration files to run the pipeline:

● projects.cfg
For each project, the user specifies the reference genome and the top-
level ‘project’ directory. A ‘project’ directory will contain a subdirectory for
each of its libraries. In projects.cfg, default parameters for each script
are specified in the “default” section. Defaults can be overridden by values
set with each project. Uppercase words (e.g. MERGINGDIR) are used
by calling scripts as templates that will be automatically replaced with
appropriate values during a pipeline run.

[default]
merge.pl: VERDIR LIB contigs MERGINGDIR
align_parser.py: BLAT_DIR blat -n 1 -u -m 90 -d -k
TRACK_NAME -o PSL -f CONTIGS
...

[projectA]
topdir: /projects/projectA
reference: hg18

[projectB]

...

Figure 1. Example organization of “projects.cfg”

● binaries.cfg
Paths to external software are specified in “software: path” format,
with one line for each executable. An example file is provided in the
distribution. Note in the example file, two versions of “python” are
specified: “python” points to the executable of the correct version of
python that runs on GSC’s cluster, and “python_xhost” points to the
executable of the version of python that runs locally. Please replace all
paths to point to proper binaries in your own computing environment. Do
not change the name of software (the part before “:”).

[binaries]
python: /gsc/software/linux-x86_64/python-builder-2.6.4/
bin/python
python_xhost: /home/rshe/bin/bin/python
perl: /usr/local/bin/perl5.8.3
blat: /home/pubseq/BioSw/blat/blat34/blat
exonerate: /home/pubseq/BioSw/exonerate/exonerate-2.2.0-
x86_64/bin/exonerate

bwa: /home/pubseq/BioSw/bwa/bwa-0.5.6/bwa
bowtie: /home/rchiu/bin/bowtie-0.12.5/bowtie
bowtie_build: /home/rchiu/bin/bowtie-0.12.5/bowtie-build
samtools: /home/pubseq/BioSw/samtools/0.1.6/samtools
export2fq: /home/pubseq/BioSw/Maq/maq-0.7.1_x86_64-linux/
scripts/fq_all2std.pl export2std
biopython: /home/rchiu/python/biopython-1.52
mqsub: /opt/mqtools/bin/mqsub

Figure 2. Example of “binaries.cfg”

● cluster.cfg
Specify cluster job settings including the memory requirement for running
different scripts on cluster, and the genome file used for each reference
genome. This file is required when running jobs on cluster.

[memory]
merge.pl: 1G
fusion.py: 1G
model_matcher.py: 10G
reads_to_contigs.py: 1G
align_parser.py: 1G
cluster_align.py: 5G
gene_coverage.py: 1G

[genomes]
hg18: /var/tmp/genome/lymphoma/ucsc-hg18.fa
mm9: /var/tmp/genome/mouse/mm9_build37_mouse.fasta

Figure 3. Example of “cluster.cfg”

● align.cfg
Specify parameters used by each aligner when contigs are aligned to the
reference genome.

● model_matcher.cfg
Specify settings of annotations for “model_matcher.py”, for finding
novelties in the transcriptome. Each section specifies the annotation
parameters for a reference genome. See 7.1 under “Assembly and
Analyzing Transciptome Data” for more details.

[hg18]
path: /home/mapper/trans-ABySS/annotations/hg18
k: knownGene_ref.txt
e: ensGene_ref.txt
r: refGene.txt
a: acembly_ref.txt
x: ensg.txt
order: k,e,r,a

splice: /home/mapper/trans-ABySS/annotations/
shared/splice_motives.txt

[mm9]
path: /home/mapper/trans-ABySS/annotations/mm9
k: knownGene_ref.txt
e: ensGene_ref.txt
r: refGene.txt
a: acembly_ref.txt
order: k,e,r,a
splice: /home/mapper/trans-ABySS/annotations/
shared/splice_motives.txt

Figure 4. Example of “model_matcher.cfg”

● submitjobs.sh
The “submitjobs.sh” script in “utilities” folder is used to run jobs on cluster.
The GSC cluster is currently a 400+ core (CPUs) Beowulf-style cluster
running Red Hat Enterprise Linux 4. The infrastructure follows the notion
of having a headnode which is the point of entry for users to submit and
test their jobs – the rest of the cluster are composed of compute nodes
which are only involved in the computational side of things. The headnode
is called “apollo” and running OSCAR 5.0pre with Sun Grid Engine 6.1u3.
To submit jobs internally to GSC cluster, use “submitjobs.sh apollo mqsub
<job_dir> <job_file> <job_name> <job_memory_requirement>”.
The script “submitjobs.sh” can be tailored by users to their own way of
submitting cluster jobs.

4. Input file
The wrapper scripts take an input file as the argument. The input file specifies the
libraries that need to be processed. Each library is specified by four fields in one
line: “<library> <ABySS-version> <ABySS-assembly-location> <project>”. The
fields are separated by spaces. For example:

LIB0001 1.2.1 /projects/ABySS/assemblies/LIB0001 projectA
LIB0002 1.2.1 /projects/ABySS/assemblies/LIB0002 projectA
LIB0003 1.2.1 /projects/ABySS/assemblies/LIB0003 projectA

Figure 5. Example input file

Note that library names should be unique in the same input file. To process a
library with different parameters (e.g. with different ABySS-versions), each run
should be put in a different input file.

5. Transcript annotations and genome sequence

Trans-ABySS compares genome alignments of assembled contigs to known
annotations to discover novel transcript variants.

Transcript annotation files are downloaded from the UCSC genome browser.
Annotation files are organized by reference genome (Fig. 6). Currently trans-
ABySS comes with “hg18” and “mm9” annotations that include Ensembl, UCSC,
Aceview and Refseq transcripts.

annotations/

hg18/
genome.fa -> ucsc-hg18.fa
knownGene.txt
knownGene_ref.txt
knownGene_ref.idx
knownGene_ref.txt.map
…

mm9/
 …

shared/
splice_motifs.txt

README

Figure 6. Organization of the “annotations” folder.

5.1 Reference Genome

The reference genome fasta file is expected to be either copied or linked to
genome folder as “genome.fa”.

5.2 Transcript Annotations

Transcript annotation files (“knownGene.txt”, “ensGene.txt”, “acebmly.txt”)
(downloaded from UCSC) need to be modified slightly to include
the common gene names at the end of each record
(“knownGene_ref.txt”, “ensGene_ref.txt”, “acebmly_ref.txt”). The “refGene.txt”
file (also downloaded from UCSC) does not require such processing.
The “README” file in the “annotations” folder describes how to do this.

5.3 Indexes (“.idx” files)

The transcript annotation files are indexed by genomic locations to expedite the
searching and matching of contigs. Indexing is achieved by running the scripts in
the “analysis/annotations” folder, one for each transcript model. For example, to
index Ensembl transcripts, run the following command:

python ~mapper/trans-ABySS/analysis/annotations/
ensembl.py ~mapper/trans-ABySS/annotations/hg18/

ensGene.txt -i ~mapper/trans-ABySS/annotations/hg18/
ensGene.idx

Currently, the following four scripts are supplied: ensembl.py, knownGene.py (for
ucsc known genes), aceview.py (aceview genes), refGene.py (for refseq genes).

Transcript model files with other formats can be used if you create a custom
parser. This can be easily done by modifying any of the existing parsers in
the “analysis/annotations/” folder.

5.4 Gene to Transcript Mapping (“.map” files)

A gene-to-transcript mapping file provides simple correspondence between
genes and transcripts. It was generated by cutting the 2 columns of "gene name"
and "transcript name" from transcript annotation file into a tab-delimited text
file (gene<tab>transcript). The “README” file in the “annotations” folder also
describes how to generate this file. This mapping file is used to calculate gene
coverage (see 7.2 under “Assembling and analyzing transcriptome data”).

5.5 Shared files (under “shared” folder)

This folder contains a “splice_motives.txt” that specifies motives of known
splice sites for mammalian genomes. It is used by “align_parser.py”
and “model_matcher.py” (see 7.1 under “Assembling and analyzing
transcriptome data”) for determining whether a splice site is novel or known.

 Assembling and analyzing transcriptome data

1. Trans-ABySS Pipeline Overview

Because transcriptome samples typically contain transcripts with a wide range of
expression levels, and assemblies generated with different k-mer lengths perform
differently in capturing transcripts expressed at different levels (see manuscript),
we recommend using a wide range of k-mer values to assemble read data from
an RNA-seq library (Robertson et al. 2010). Currently, for a read length L, we
typically use a range from L/2 to L-1 for libraries with L <= 50 bp, and a range
from L/2 to L-1, using every other k, for libraries with L > 50 bp.

Trans-ABySS starts with ABySS multi-k assemblies and processes them into a
merged assembly, which is then used to generate alignments and identify novel
events and perform various other analyses. Figure 7 shows the overview of
trans-ABySS pipeline.

Figure 7. Trans-ABySS overview

2. ABySS assemblies and folder structure

Trans-ABySS expects the output from ABySS assemblies of a particular library to
be organized as a set of subfolders, each of which is named with “k” followed by
the k-mer length (e.g. k26) and contain the ABySS output files from an assembly

using this value of k.

Library/

k1/
[ABySS output files]

k2/
[ABySS output files]

…
in

Figure 8. The ABySS assembly folder structure that Trans-ABySS expects.
Each ‘k’ folder holds the output of an ABySS assembly that was generated using
that k value. Here, schematic folder ‘k’ names are shown; typical names might
be: k26, k27,

In the above ABySS output parent folder, “in” is a simple text file that list all
the paths of all input read files. The read files can be in any of the following
formats: bam, qseq, export, or fastq; they can be compressed using gzip or
bzip2 (with “.gz” or “.bz2” extensions). The “in” file must be present in the ABySS
assembly folder. Its purpose is to facilitate a later step of aligning reads to contigs
(“reads_to_contigs.py”). An example “in” file follows.

/archive/solexa1_4/analysis2/HS1136/3153YAAXX_2/
3153YAAXX_2_1_export.txt.gz
/archive/solexa1_4/analysis2/HS1136/3153YAAXX_2/
3153YAAXX_2_2_export.txt.gz
/archive/solexa1_4/analysis3/HS1136/42HVVAAXX_1/
42HVVAAXX_1_1_export.txt.gz
/archive/solexa1_4/analysis3/HS1136/42HVVAAXX_1/
42HVVAAXX_1_2_export.txt.gz
/archive/solexa1_4/analysis3/HS1136/42HVVAAXX_2/
42HVVAAXX_2_1_export.txt.gz
/archive/solexa1_4/analysis3/HS1136/42HVVAAXX_2/
42HVVAAXX_2_2_export.txt.gz

Figure 9. An example “in” file that specifies paths to all input read files.

3. Trans-ABySS folder structure
Trans-ABySS and ABySS have similar working directory structures. The Trans-
ABySS folder structure can be set up by running “trans-abyss” or “setup.pl”,
which is in the “wrappers” folder (see Section3.3 below). Each k-mer sub-folder
should initially be empty, and will be populated by the “setup.pl” script to hold the
processed assembly file from the corresponding ABySS k-mer assembly.

Project/

Library/
Reads_to_genome/

Reads_to_genome.bam

Assembly/
Abyss-1.2.1/

source -> ABySS assembly path
k1/

Library-contigs.fa
k2/

Library-contigs.fa
…
merge/

Library-contigs.fa
fusions/
novelty/
reads_to_contigs/
tracks/

Figure 10. A typical Trans-ABySS working folder.

The “Reads_to_genome” folder should contain the reads-to-genome alignments
in .bam format. See Section 6.3 below for more details.

4. Run Trans-ABySS Pipeline

The current pipeline can be run with a wrapper script: “trans-abyss” (in
the “wrappers” folder). It carries out analysis work in seven stages:
1. generate transcriptome assembly:

1.1 set up Trans-ABySS folder structure (as in Section 3 above);
1.2 process each ABySS k-mer assembly (see Section 5.1 below);
1.3 merge all k-mer assemblies into one assembly (see Section 5.2
below);

2. align reads to contigs (see Section 6.1 below);
3. align contigs to genome (see Section 6.2 below);
4. generate filtered tracks (see Section 7.1 below);
5. find novel transcript events (see Section 7.1 below);
6. report gene expression levels (see Section 7.2 below).
7. find fusions (see Section 7.3 below).
Each stage depends on the completion of some previous stages. Please refer to
the pipeline overview for the workflow (see Figure 7).

To run “trans-abyss”, use the following command:

trans-abyss [options] <-i input-file> <-1|-2|-3|-4|-5|-6|-
7>

where “input-file” is the input file described in Section 4 under “Configuration”.
Specify the stage number to run trans-ABySS in corresponding stage: “-1”, “-
2”, “-3”, “-4”, “-5”, “-6” or “-7”.

The options are as follows:
 -c <CLUSTER_HEAD>

name of the cluster head node to submit jobs (if applicable). For
large datasets, it is necessary to run the jobs on cluster.

 -s <START_LIB>
start library, i.e. the name of the first library to be processed in
the list of libraries in the input file, can be used in combination
with “-num” option (see below)

 -n <NUM>
number of libraries to process starting from "start library". Use
this option in combination with “-start” option to specify the
libraries that need to be processed.
For example, given an input file as shown in [Figure 5], use “-
start LIB0002 -num 2” to start from library “LIB0002” and
process 2 libraries, i.e. LIB0002 and LIB0003.
On the other hand, if only “-start” option is specified without “-
num” option, then all libraries from the start library onwards will
be processed.

 -l <LIB>
library that needs to be processed (for processing single library).
If only a single library needs to be processed, use this option
instead of “-start” and “-num” combination.
Running “setup.pl” without “-start”, “-num”, or “-lib” options will
process all libraries in the input file.

 -h | --help
Print help message.

 --version
Print version message.

5. Setting up contigs for analysis

5.1 Process ABySS contigs for each k-mer assembly
For each assembly, a working set of contigs will comprise the following:
- all paired-end contigs;
- all junction contigs; “Junction contigs” are single-end contigs that has exactly
two neighbours in the ABySS graph, one at each side. The neighbouring contigs
and the junction contig will be merged into one longer contig.
- single-end contigs of length greater than 150bp;

- single-end contigs that are not “islands” and between (2k-1)bp and
150bp. “Islands” are contigs that do not have any neighbours in the ABySS
graph.
The contig set can be generated by running “assembly.py” in the “utilities” folder:

assembly.py library –d assembly_path/k50 –o k50/library-
contigs.fa –k 50

For each assembly, this subset of contigs for analysis should be stored in the
assembly’s k-mer directory and should be named “LIBRARY-contigs.fa”.

5.2 Create the merged assembly

After each assembly is processed, multiple k-mer contig sets are then merged to
create a smaller non-redundant contig set. The merging algorithm (“merge.pl”),
which is described in the manuscript, uses Blat to perform iterative pairwise
alignments between assemblies. The final non-redundant contig set should be in
the “merge” sub-folder and should be named, again, “LIBRARY-contigs.fa”.

5.3 Using the wrapper

For convenience, the wrapper script “trans-abyss” is set up to call “assembly.py”
and “merge.pl” automatically in its stage “-1” as follows:

trans-abyss [options] <-i input-file> -1

The options are specified in Section 4 above.

6. Contig and read alignments

6.1 Read alignments to contigs

Read alignments to contigs are required for providing evidence for novel
transcript events and for estimating gene-level expression. Trans-ABySS
currently uses Bowtie in single-end mode to perform read-contig alignments.
Because contigs can overlap, we allow multi-mapping, but require exact match
alignments.

The wrapper script “trans-abyss” can be used to perform reads-to-contigs
alignments as follows:

trans-abyss [options] <-i input-file> -2

6.2 Contig alignments to a reference genome

All the analyses described below (except for polyadenylation sites) require that
assembled contigs be aligned to the reference genome. Trans-ABySS currently
supports Blat and Exonerate aligners. However, outputs from other aligners
that can generate .psl outputs (e.g. GMAP) can be treated as Blat outputs (by
specifying the aligner as “blat” when required) and so can be processed by
Trans-ABySS.

As noted in the manuscript, to minimize the time required to review candidate
novel events, it’s important that a contig aligner have a low error rate, and that its
error rate be addressed.

Because even after merging there will typically be a large number of contigs,
contig alignments are usually performed in parallel on a computer cluster.
However, it is inevitable that computing architecture at different laboratories will
be different. The “submitjobs.sh” script in “utilities” can be tailored by users for
their own way of submitting cluster jobs.

To run BLAT alignments on a cluster, we split the merged assembly file into
many smaller files, and run each job independently on the cluster. The current
default is to separate the assembly into 1,000 contigs per file. These files and
their corresponding cluster job scripts and output can be found in the “merge/
cluster/<LIB-blat-dir>” subdirectory in the Trans-ABySS working directory (please
refer to [Figure 9]):

merge/cluster/<LIB-blat-dir>/input
merge/cluster/<LIB-blat-dir>/jobs
merge/cluster/<LIB-blat-dir>/output

The wrapper script “trans-abyss” can be used to perform contigs-to-genome
alignments as follows:

trans-abyss [options] <-i input-file> -3

It may be possible that some jobs are not finished successfully on the cluster.
To check whether all BLAT alignment jobs for a certain library are finished
completely, use the tool “check_complete_blat.pl” (supplied in the “utilities”
folder) as follows:

check_complete_blat.pl <LIB-blat-dir>

<LIB-blat-dir> is the name of the directory that holds the inputs, job scripts, and
outputs of the blat jobs.

6.3 Aligning reads to a reference genome

In trans-ABySS v1.0, read alignments to a reference genome are directly used as
supporting evidence only to rank fusion gene candidates. A fusion candidate that
is well supported by mate-pair read alignments is prioritized for manual review.
The v1.0 pipeline does not include code for handling exon-exon junctions for
such read alignments. For the results in the publication, we make a BWA-
aligned .bam format file, and a .bigWig file derived from it, available for download
from the Trans-ABySS software download page. These were generated with an
internal GSC pipeline (unpublished).

7. Transcriptome assembly analysis
Trans-ABySS offers the following functionality:

7.1 Identify candidate transcript structures that are novel relative to one
or more sets of annotated transcript models (e.g. RefSeq, Ensembl, …).

We recommend filtering contig alignments to retain only the best alignment that
is unique (i.e. a contig cannot align to multiple genomic locations with the same
score) and covers the majority of the length of the contig (90%):

python align_parser.py blat_output_dir/blat_output_file
blat -n 1 -u m90 -d -k “track name” -o filtered.psl -f
merged_contigs.fa

The wrapper script “trans-abyss” can also be used to do this job:

trans-abyss [options] <-i input-file> -4

After filtering, the resulting “filtered” PSL track can be loaded into the UCSC
genome browser for review, and be used for mapping to known transcripts for
finding novelties:

model_matcher.py filtered_track.psl -s genome -m k,e,r,a
-l -d -o output_dir -S merged_contigs.fa -R genome.fa

The wrapper script “trans-abyss” can be used to do this job by specifying stage “-
5”:

trans-abyss [options] <-i input-file> -5

The output directory will contain:

1. “mapping.txt” – details the mappings of contigs to known transcripts

2. “events.txt” – reports novel transcript variants relative to all transcript
models (e.g. skipped exons, novel exons, …)

Each line of the “mapping.txt” file reports the following:
<contig> matches <transcript>(<gene>) model:<model abbreviation> (wt:<model
weight> in <number aligned blocks> blocks total blocks=<total alignment blocks>
total exons=<total number exons> <match> coord:<contig alignment coordinate>
score:<score> events:<number of events> coverage:<coverage>

where:
<contig> = contig id
<transcript> = transcript id
<gene> = gene symbol
<model abbreviation> = gene model abbreviation, as specified in configuration
file for model_matcher.py (e.g. ‘k’ = known genes, ‘e’ = Ensembl, ‘r’ = Refseq, ‘a’
= Aceview)
<model weight> = determined by order of models used for matching, which is
specified in configuration file for model_matcher.py (the first model specified
will have higher weight, the second model lower weight). This serves as a tie-
breaker when contigs are aligned with the same score to different gene models -
gene model with the highest weight will be considered the best match
<number aligned blocks> = number of alignment blocks matching exons
<total alignment blocks> = total number of alignment blocks in contig alignment
<total number exons> = total number of exons in transcript
<match> = “full_match”: all edges of alignment blocks aligned (outermost edges
not included); “partial)match”: a subset of the total number of block edges
aligned; “non_match”: none of the block edges aligned
<contig alignment coordinate> = coordinate of contig alignment in UCSC genome
browser format (chr:start-end)
<score> = total number of edges perfect aligned + 0.5 * number splice site
variants
<number of events> = number of novel splicing events
<coverage> = number of bases aligned / transcript length

The “events.txt” file reports an event per contig per line in space-delimited
columns:
1. event id: the same event shown by different contigs are grouped using event
id, e.g. N.1, N.2, N.3 indicates three contigs captured the same event
2. event type:

‘AS3’ = novel 3’ splice site
‘AS5’ = novel 5’ splice site
‘AS53’ = novel 5’ splice site and novel 3’ splice site
‘skipped_exon’ = exon skipping
‘retained_intron’ = retained intron
‘novel_intron’ = novel intron
‘novel_exon’ = novel exon

http://www.google.com/url?q=http%3A%2F%2Fmodel_matcher.py&sa=D&sntz=1&usg=AFQjCNHst5XpIkQR8sshkUpaNwXaFRxc1A
http://www.google.com/url?q=http%3A%2F%2Fmodel_matcher.py&sa=D&sntz=1&usg=AFQjCNHst5XpIkQR8sshkUpaNwXaFRxc1A
http://www.google.com/url?q=http%3A%2F%2Fmodel_matcher.py&sa=D&sntz=1&usg=AFQjCNHst5XpIkQR8sshkUpaNwXaFRxc1A
http://www.google.com/url?q=http%3A%2F%2Fmodel_matcher.py&sa=D&sntz=1&usg=AFQjCNHst5XpIkQR8sshkUpaNwXaFRxc1A
http://www.google.com/url?q=http%3A%2F%2Fmodel_matcher.py&sa=D&sntz=1&usg=AFQjCNHst5XpIkQR8sshkUpaNwXaFRxc1A
http://www.google.com/url?q=http%3A%2F%2Fmodel_matcher.py&sa=D&sntz=1&usg=AFQjCNHst5XpIkQR8sshkUpaNwXaFRxc1A
http://www.google.com/url?q=http%3A%2F%2Fmodel_matcher.py&sa=D&sntz=1&usg=AFQjCNHst5XpIkQR8sshkUpaNwXaFRxc1A
http://www.google.com/url?q=http%3A%2F%2Fmodel_matcher.py&sa=D&sntz=1&usg=AFQjCNHst5XpIkQR8sshkUpaNwXaFRxc1A
http://www.google.com/url?q=http%3A%2F%2Fmodel_matcher.py&sa=D&sntz=1&usg=AFQjCNHst5XpIkQR8sshkUpaNwXaFRxc1A
http://www.google.com/url?q=http%3A%2F%2Fmodel_matcher.py&sa=D&sntz=1&usg=AFQjCNHst5XpIkQR8sshkUpaNwXaFRxc1A

‘novel_utr’ = novel UTR
‘novel_transcript’ = novel transcript

3. transcript id (gene symbol>
4. alignment block number
5. exon number: exons are numbered in ascending order of genome coordinate,
regardless of transcript orientation
6. event coordinate: overall event coordinate from start to end
7. splice-site info, may differ depending on the type of event

a) for AS/novel_utr/novel_intron/novel_exon/novel_transcript:
<splice site sequence>(<motif name>)

b) for retained_intron:
3x:False/True

c) for skipped_exon:
not applicable

8. surrounding coordinate: event region masked in “--”, surrounded by
neighboring coordinates e.g. <upstream neighbour start>,<upstream neighbour
end>,--,<downstream neighbour start>,<downstream neighbour end>
9. longest open reading frame: <start 3 amino acids>...<end 3 amino
acids>,<number amino acids>aa,<start base number of contig>-<end
base number of contig>,<total number bases translated>nt,<fraction contig
translated>,<orientation>

7.2 Estimate gene-level expression
Trans-ABySS maps contigs to annotated transcripts by default. To estimate
gene expression levels, you should provide either a gene-to-transcript mapping
file, or use a gene annotation file instead of a transcript annotation file.

There are three parts to the calculations for determining gene expression levels:

1. Align reads to contigs. This is part of the standard pipeline. Alignments can
be generated by running the wrapper script "trans-abyss" with stage “-2” or by
directly running the Python script "reads_to_contigs.py".
2. Map contig alignments to annotated transcripts to generate a ‘coverage’ file.
This can be done by directly running "model_matcher.py" with the “--coverage”
option or running the wrapper “trans-abyss” with stage “-5”.
3. Run gene_coverage.py to determine gene coverage:

python gene_coverage.py coverage-file-from-model_matcher
reads-to-contgs-bamfile track-file-used-for-model_matcher libary-
name -g gene-transcript-mapping

If contig alignments were mapped to a gene annotation file in step 2,
the gene-transcript-mapping file can be omitted. This step can also be run with
the wrapper “trans-abyss” as follows:

trans-abyss [options] <-i input-file> -6

The output of "gene_coverage.py" reports the following:
1. gene name
2. number of reads mapped to gene
3. total read bases mapped to gene
4. union of contig alignment block lengths
5. normalized coverage (column 4 / column 3).

7.3 Identify candidate gene fusion events.

Split genomic alignments of contigs are reported as candidate gene fusion
events. To generate a file with such candiate events, run:

fusion.py blat_out_dir output -l library -B genomic_bam -
b contig_bam

To minimize time spent in manually reviewing fusion candidates, we recommend
filtering outputs on: a) the minimum number of read pairs from read-to-genome
alignments, b) the minimum number of spanning reads (from read-to-contig
alignments), c) the minimum percentage of identity in the contig-to-genome
alignments, etc.:

fusion.py output filtered_output -X -F

The output of “fusion.py” takes the following format (one candiate fusion event
per line):

CTG:<ctg id>(<ctg length>bp) TARGET:<region1 target coordinate>,<region
2 target coordinate> CONTIG:<region1 contig coordinate>,<region 2 contig
coordinate> <region1 orientaion>,<region2 orientation> TO:<overlap
target fraction>,CO:<query overlap fraction>,CC:<contig coverage
fraction>,I1:<alignment 1 identity>,I2:<alignment 2 identity>,AF1:<alignment
fraction1>,AF2:<alignment fraction2>

where:
<overlap target fraction> = fraction of overlap between target regions over sum of
target regions aligned
<query overlap fraction> = fraction of overlap between contig regions over sum of
contig regions aligned
<contig coverage fraction> = fraction of contig covered by both alignments
<alignment 1 identity> = identity of alignment 2
<alignment 2 identity> = identity of alignment 1
<alignment fraction1> = fraction of contig aligned to region 1
<alignment fraction2> = fraction of contig aligned to region 2

The wrapper script “trans-abyss” can be used to do this job:

trans-abyss [options] <-i input-file> -7

7.4 Identify candidate SNVs and indels.

ABySS outputs a “bubbles” file (“bubbles.fa”) that contains bubble contigs that
represent potential SNVs. Alignments of the bubble contigs to both the genome
and the paired-end contig set can be used to report SNVs:

python bubble.py k-len bubbles.fa align-genome.psl align-
contigs.psl blat -o logfile -n 1 -u -m 90 -b align-genome-
blast-output

Genome alignments of contigs can also be mined to extract potential SNVs and
indels. Currently, this requires the contigs genome alignment in both psl and
blast formats:

python align_parser.py blat_output_psl_file blat -n 1 -u m90
-d -k “track name” -o filtered.psl -f merged_contigs.fa -b
blat_output_blast_file -v -w output

The .snv file generated from the above commands reports the following columns:
1. type: snv (single or multiple bases substitution), ins (insertion), or del (deletion)
2. chr: chromosome
3. chr_start: start coordinate of event
4. chr_end: end coordinate of event
5. strand: strand of alignment
6. ctg: contig id
7. ctg_len: contig length
8. ctg_start: contig start base
9. ctg_end: contig end base
10. len: length of event (bases)
11. change: e.g. G->A, or bases inserted or deleted
12. from_end: shortest distance of event from contig end

Work is in progress to rank candidate SNVs and indels by using read alignments
as evidence.

7.5 Identify candidate polyadenylation sites.

Polyadenylation site candidates are detected using a combination of Perl scripts,

the BWA read aligner and UNIX commands. To perform the basic operations, a
configuration file needs to be set up which points to the locations of BWA and the
transcript models. The wrapper scripts ‘polyareads.pl’ and ‘polyafinder.pl’ can run
the necessary commands.

The ‘polyascripts’ folder under the ‘analysis’ folder has this structure

bin
 Perl scripts
conf
 polyafinder.conf
DISCLAIMER.txt
README.txt

The wrapper script requires as input: raw Illumina reads, gene transcript models
in FASTA format, and contig FASTA sequences from the assembly pipeline.

As described in the publication’s Supplementary Information, the method uses
two types of reads: PAM and EJ.

Run the wrapper script to extract PAM reads from the read files:

polyareads.pl -p -f <FORWARD_READS> -r <RIGHT_READS> [-F
<FORWARD_READS2> -l ...] [-r <RIGHT_READS2> -r ...] [-conf
<CONFIGFILE>]

Perform the PAM read alignment:

polyafinder.pl -f <FORWARD_PAM> -r <REVERSE_PAM> -t
<TRANSCRIPT> [-t <TRANSCRIPT>] -a [-cont <CONTIGFILE> -
capp]

Extract EJ reads from the read files:

polyareads.pl -e -f <FORWARD_READS> -r <RIGHT_READS> [-F
<FORWARD_READS2> -l ...] [-r <RIGHT_READS2> -r ...] [-conf
<CONFIGFILE>]

Perform the EJ read alignment:

polyafinder.pl -e -a -f <FORWARD_EJ> -r <REVERSE_EJ> -t
<TRANSCRIPT> [-t <TRANSCRIPT>] [-mf <FORWARD_EJ_MATE> -mr
<REVERSE_EJ_MATE>]

Optionally, it is possible to create visual images of the reads mapped to the
genome by creating .bed files with getremappedBED.pl or samse2bed.pl, .wig
files with bed2Wig.pl. Both can be used as viewable tracks within the UCSC

genome browser. To summerize high-hit alignments and generate genome
browser URLs, use the script getpolyTmapcoord_extracols.pl.
Align reads to genome by either:

cat <INPUT_READS> | getremappedBED.pl <OUT_UNMAPPED_READS>
<INPUT_FASTQ > <OUTPUT_BED>

or (if no raw reads available)
bwa aln <GENOME_FA> <INPUT_FASTQ> > <OUTPUT_SAI>
bwa samse -n 20 <GENOME_FA> <OUT_SAI> <INPUT_FASTQ> |
samse2bed.pl > <OUT_BED>

Then, convert to .wig
cat <OUT_BED> | bed2Wig.pl > <OUT_WIG>

To rank the transcripts and to create UCSC linked URLs:

getpolyTmapcoord_extracols.pl -t <IN_TSV> [-b <OUT_BED>]
[-z <ZOOM>] [-c CUTOFF1,C2,C3,...,Cn] [-u 'http:/
/genome.ucsc.edu/cgi-bin/hgTracks?
org=<ORGANISM>&db=<DB>&position='] [-o] [-d 500] >
<RANK_OUT>

To limit the amount of false positives due to high poly-A and poly-T regions, use
the script calcPolyAinSeqs.pl for the transcript and contig sequences, and use
the script findgenomicpolya.pl for the genome.

For more detailed information on each script, please refer to their respective
perldocs, and the README in the “polyascripts” folder under the “analysis”
folder.

Data sets

1. Large
MM0472 library at SRA (Short Read Archive). This library can be downloaded
from http://www.ncbi.nlm.nih.gov/sra/SRX017642?report=full

Once downloaded, run ABySS with multi-k (we run every k from 26 to 50) and
then use trans-ABySS to process the assemblies and perform analyses. The
reads to genome (mm9) alignments can be downloaded from Trans-ABySS
software release web page.

2. Small

2.1 Insr_UTR
We include a dataset that consists of all 15024 reads that aligned with Bowtie to

http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FSRX017642%3Freport%3Dfull&sa=D&sntz=1&usg=AFQjCNFmUwWjXCsvUv3ztxPUblon1yY5xw

contigs that the pipeline matched to annotated insulin receptor gene, Insr. Trans-
ABySS identified an exon in this gene that was novel when we discovered it,
but was subsequently included in ‘UCSC gene’ transcript models for this gene.

This set of reads can be assembled with ABySS, and processed and analyzed
with Trans-ABySS on a single CPU in less than 2 hours. All data/results are
stored in “sample_date/Insr_UTR” folder and can be used for testing. You should
be able to duplicate the results when running trans-ABySS on your own machine.

2.2 Polyadenylation site analysis
We include a small dataset that contains 34 PAM reads in FASTQ format, 2
genes in FASTA format, and a contig sequence in FASTA format. The PAM
reads are chosen to illustrate the ability to find novel polyadenylation sites.
Specifically, the two gene examples show novel short 3’ UTR while the contig
shows a lengthened 3’ UTR.

The wrapper scripts polyareads.pl and polyafinder.pl can be used to
extract and align the reads to the transcripts.

References

Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao
Y, Hirst M, Schein JE, Horsman DE, Connors JM, Gascoyne RD, Marra MA,
Jones SJ. De novo transcriptome assembly with ABySS. Bioinformatics. 2009
Nov 1;25(21):2872-7.

Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee
S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen A, Cezard T, Butterfield
Y, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu A-L, Tam A,
Zhao Y-J, Moore R, Hirst M, Marra MA, Jones SJM, Hoodless PA, Birol B. De
novo Assembly and Analysis of RNA-seq data. Nature Methods, in press.

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS:
a parallel assembler for short read sequence data. Genome Res. 2009
Jun;19(6):1117-23.

