read.matrix.hb(system.file("HBdata","lsq.rra",package = "SparseM"))-> hb.o class(hb.o) # -> [1] "matrix.csc.hb" model.matrix(hb.o)->design.o class(design.o) # -> "matrix.csr" dim(design.o) # -> [1] 1850 712 y <- model.response(hb.o) # extract the rhs class(y) # -> numeric length(y) # [1] 1850 t(design.o)%*%design.o -> XpX #X'X t(design.o)%*%y -> Xpy #X'y chol(XpX)->chol.o class(chol.o) # "matrix.csr.chol" backsolve(chol.o,Xpy)-> b1 # least squares solutions in two steps b1[1:10] solve(XpX,Xpy) -> b2 # least squares estimates in one step back.solve(chol.o, forward.solve(chol.o, Xpy)) -> b3 # least squares solutions # in 3 steps b2[1:10] solve(XpX) -> XpX.inv # (X'X)^-1 class(XpX) # -> "matrix.csr" diag(XpX %*% XpX.inv) # diagonal of the 712 x 712 identity matrix system.time(solve(XpX)) # faster system.time(solve(as.matrix(XpX))) # much slower image(XpX)