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Summary. Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or
identifying interpretable row–column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard
structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and
right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient
vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to
produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along
with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used
to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated
datasets.
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1. Introduction
High dimensionality has rapidly become a common feature
of data encountered in a variety of applications. Sometimes
the data are high-dimension low sample size (HDLSS), for ex-
ample, in fields such as text categorization, medical imaging,
and microarray gene expression analysis. HDLSS offers addi-
tional statistical challenges as classical multivariate analysis
fails in such settings. Unsupervised learning is playing an in-
creasingly important role in exploring such high-dimensional
datasets, whose goal is to find interpretable structures in the
data.

Biclustering methods refer to a collection of unsuper-
vised learning tools that simultaneously identify distinctive
“checkerboard” patterns in data matrices, or sets of rows (or
samples) and sets of columns (or variables) in the matrices
that are significantly associated. Such methods are becom-
ing increasingly popular in a variety of applications. Madeira
and Oliveira (2004) offer a comprehensive survey of existing
biclustering algorithms for biological data analysis. Busygin,
Prokopyev, and Pardalos (2008) provide a survey of bicluster-
ing in data mining from a theoretical perspective and cover
a wider range of applications. See also Shabalin et al. (2009)
for a more recent development of biclustering methods.

In this article, we introduce sparse singular value decompo-
sition (SSVD) as a new tool for biclustering. The application
of such a tool is seen in two motivating examples we consider
in the article. The first example (Section 2) is a medical ap-
plication where the data matrix records the microarray gene
expressions of 12,625 genes for 56 subjects who have different
types of lung cancer. Researchers are interested in identifying
groups of coregulated genes for different cancer types. The

second example (reported in the online supplement) concerns
the nutrition content of 961 different foods, measured by six
nutritional variables. We expect that different subgroups of
foods can be clustered together based on nutrient content.

Let X be a n × d data matrix whose rows may represent
samples and columns may represent variables. The singular
value decomposition (SVD) of X can be written as

X = UDVT =
r∑

k=1

sk uk vT
k , (1)

where r is the rank of X, U = (u1, . . . , ur ) is a matrix of or-
thonormal left singular vectors, V = (v1, . . . , vr ) is a matrix
of orthonormal right singular vectors, D = diag(s1, . . . , sr ) is a
diagonal matrix with positive singular values s1 ≥ · · · ≥ sr on
its diagonal. SVD decomposes X into a summation of rank-
one matrices sk uk vT

k , each of which we call an SVD layer.
In applications one usually focuses on the SVD layers cor-
responding to large sk values. The rest of SVD layers corre-
sponding to small sk s can often be interpreted as noise and
are less useful. If we take the first K ≤ r rank-one matrices
in the summation in (1), we obtain the following rank-K ap-
proximation to X:

X ≈ X(K ) ≡
K∑

k=1

sk uk vT
k . (2)

In fact, X(K ) gives the closest rank-K matrix approximation
to X in the sense that X(K ) minimizes the squared Frobenius
norm, i.e.,
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X(K ) = argmin
X∗∈AK

‖X − X∗‖2
F = argmin

X∗∈AK

tr{(X − X∗)(X − X∗)T},

(3)

where AK is the set of all n × d matrices of rank K (Eckart
and Young, 1936).

The proposed SSVD seeks a low-rank matrix approxima-
tion to X as that in (2), but with the requirement that the
vectors uk and vk are sparse, that is, they have many zero
entries. We obtain sparsity by adding sparsity-inducing penal-
ties to the minimization objective in (3). The sparsity prop-
erty implies that, the rank-one matrix sk uk vT

k , now referred
to as an SSVD layer, clearly has a checkerboard structure.
This makes SSVD suitable for biclustering. Specifically, for
the kth SSVD layer, those rows (or samples) with nonzero
uik s are naturally clustered together, as well as those columns
(or variables) with nonzero vjk s. Hence the kth layer simul-
taneously links sets of samples and sets of variables together
to reveal some desirable sample-variable association. For ex-
ample, in the lung cancer application of Section 2, the first
SSVD layer identifies 3205 genes (out of the original 12,625
genes) that point to a contrast between cancer types.

The rest of the article is organized as follows. We start
with an illustration of our SSVD method in Section 2 by
analyzing the lung cancer data studied in Liu et al. (2008).
We then present the methodological details of SSVD in Sec-
tion 3. Section 3.1 defines a penalized sum-of-squares criterion
for obtaining SSVD layers and makes connections with vari-
able selection methods for penalized regressions; Section 3.2
presents an iterative algorithm for efficient computation of
SSVD layers; Section 3.3 gives a data-driven procedure for
selecting the penalty parameters; Section 3.4 compares SSVD
with the closely related sparse principal component analy-
sis (PCA) method of Shen and Huang (2008); Section 3.5
briefly reviews several other SVD-based biclustering methods
and discusses their differences with SSVD. In Section 4, we
use simulation studies to evaluate SSVD and compare it with
several competing methods. We then conclude in Section 5.
Results from additional simulation studies, one real applica-
tion of analyzing the food nutritional data of Lazzeroni and
Owen (2002), and more analysis of the cancer data can be
found in the Web Appendix.

2. Lung Cancer Data
In this section, we illustrate SSVD using microarray gene ex-
pression data. In general, microarray data are HDLSS, in that
the expression levels of thousands of genes, d, are measured
simultaneously only for a small number of subjects, n. Gene
selection is a fundamental challenge in any analysis of mi-
croarray data. The goal is to identify sets of biologically rel-
evant genes, for example, that are significantly expressed for
certain cancer types. Below SSVD is used to simultaneously
select significant genes and relevant subjects.

The data consist of expression levels of 12,625 genes, mea-
sured from 56 subjects. These subjects are known to be either
normal subjects (Normal) or patients with one of the follow-
ing three types of cancer: pulmonary carcinoid tumors (Car-
cinoid), colon metastases (Colon), and Small cell carcinoma
(SmallCell). The data can be viewed as a 56 × 12, 625 matrix
(X), whose rows represent the subjects, grouped together ac-
cording to the cancer type, and the columns correspond to

the genes. Each column of X is first centered before the SSVD
analysis. (A subset of the data is analyzed by Liu et al. (2008)
to illustrate the effectiveness of SigClust, a tool for assessing
statistical significance of clustering.)

An important goal of our study is to simultaneously iden-
tify related gene and subject groups. For example, we are
interested in looking for genes that are significantly expressed
for certain types of cancer, or that can help distinguish dif-
ferent types of cancer. We want to point out that our SSVD
method is an unsupervised learning tool in that it does not
use the information of the available subject cancer types. We
only use the cancer type information a posterior to interpret
the analysis results and to evaluate the performance of SSVD.

We extract the first three SSVD layers X(k ) = ŝk ûk v̂T
k se-

quentially. The reason for considering only three layers is
that the first three singular values are much bigger than the
rest. The technical details of SSVD will be provided in
Section 3. The current analysis uses the algorithm summa-
rized at the end of Section 3.3 that integrates model fit-
ting and penalty parameter selection. Our algorithm usu-
ally converges within 5 to 10 iterations. Higher-order layers
take longer to estimate as the corresponding eigenvalues are
smaller. It takes 1162, 1163, and 2028 seconds for the three
layers, respectively, using our Matlab program running on a
Windows XP desktop with Intel! CoreTM2 Duo CPU P8700
of a clock speed of 2.53 Gigahertz.

Figure 1 sequentially shows the image plots of the SSVD
layers. The panels are plotted using the same color scale
shown in the color bar on the right: all entries of the layers
are first divided by the maximum absolute value of the entries
from all three layers, so that all entries afterward lie between
−1 and 1. To better visualize the gene grouping, the columns
of the kth layer are rearranged based on an ascending order-
ing of the entries of v̂k . The dotted horizontal lines in each
panel reveal the four cancer types of the subjects. The white
vertical area corresponds to those zeroed-out genes, which re-
veals the effect of the sparsity regularization. (In each panel,
8000 zeroed-out genes are excluded when plotting, and the
boundaries of the white areas are indicated.)

The plots illustrate very well the power of SSVD in biclus-
tering the genes and subjects. The first observation is that
SSVD automatically performs gene selection; the number of
genes selected in each layer is much less than 12,625: there
are, respectively, 3205, 2511, and 1221 genes involved in the
three layers, corresponding to the nonzero entries of the v̂k

vectors.
Furthermore, the selected genes correspond to informative

grouping of the 56 subjects. The plots depict some interest-
ing relations between the gene groups and groups of sub-
jects. For example, the first panel suggests that the significant
genes in v̂1 (those nonzero entries) present a strong contrast
between Normal and Carcinoid, and a milder contrast be-
tween Colon and SmallCell. More specifically, the first 1463
genes in layer 1 are mostly positively expressed for the Car-
cinoid and SmallCell groups, while negatively expressed for
the Normal and Colon groups; on the other hand, the genes
ordered between 10,883 and 12,625 show opposite expressions
for the two sides of the contrast. These 3205 genes are signif-
icantly involved in the grouping of the subjects presented in
layer 1.
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Figure 1. Lung cancer data: image plots of the first three SSVD layers ŝk ûk v̂T
k (k = 1, 2, 3). In each panel, the genes are

rearranged according to an increasing order of the entries of v̂k , and subjects are also rearranged according to the values of
ûk within each subject group. (In each panel, 8000 genes in the middle white area are excluded when plotting.) This figure
appears in color in the electronic version of this article.
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Figure 2. Lung cancer data: scatterplots of the entries of
the first three left sparse singular vectors ûk (k = 1, 2, 3). This
figure appears in color in the electronic version of this article.

Interesting two-way groupings also exist in the second
and third layers. Layer 2 shows a contrast between Car-
cinoid/Normal and Colon/SmallCell, highlighted by 2511
genes; layer 3 zeros out the Normal group and singles out
the SmallCell group, using only 1221 genes.

The subject grouping/clustering can also be seen in Fig-
ure 2, which shows the scatterplots among the first three
sparse left singular vectors ûk , k = 1, 2, 3. (For easier inter-
pretation, the cancer types are plotted using different colors
and symbols.) The first two vectors reveal three subject clus-
ters, which coincide with the following cancer type groups:
Carcinoid, Colon/SmallCell, and Normal. The next two pan-
els reveal one interesting observation: the Carcinoid patients
form two subgroups. Hence, the three vectors provide a good
separation of the four cancer types, although the cancer type
information is not used in our analysis.

Figure 3 depicts the viewpoint of SSVD as low-rank matrix
approximation. As discussed later in Section 3, one can view
the first SSVD layer as the “best” sparse rank-one approxima-
tion of the raw data matrix, the sum of the first two layers as
the “best” sparse rank-two approximation, and so on. Figure 3
shows the raw data matrix and the image plots of the rank-k
SSVD approximations for k = 1, 2, 3. For better visualization,
we rearrange the genes in the following way. Each v̂k natu-
rally groups the 12,625 genes into three groups according to
the sign of the entries in v̂k : negative, zero, positive. Hence,
the three vectors v̂k (k = 1, 2, 3) result in 27 groups of the
genes. The genes in the same group are then plotted together,
and different gene groups are separated by the dotted vertical
lines. (Only the first 5000 genes are plotted to better reveal
the structure; the additional genes are nonsignificant based
on the three v̂k s.) The SSVD low-rank approximations reveal
interesting checkerboard structures caused by the gene and
subject grouping, and in addition the rank-three approxima-
tion (the lower-left panel) highlights very well the underlying
structure of the raw data.

We now provide an illustration of how the above gene
grouping can be used to derive some gene expression profile
for the cancers. We first ignore the gene group that the en-
tries of v̂k are always zero for k = 1, 2, 3. For each subject, we
calculate the mean of the raw expression levels of the genes
within each gene group, which results in a 26-dimensional
mean expression vector for the subject. The left panel of Fig-
ure 4 plots the mean expression vectors of the 56 subjects,
where the horizontal axis labels the 26 gene groups and the
cancer types are indicated using different colors. Within each
cancer type, we then average the mean expression vectors over
the relevant subjects, and obtain a 26-dimensional mean ex-
pression profile, which is plotted in the right panel of Figure
4. There appears to be some clear difference among the four
expression profiles. For example, only Carcinoid patients are
positive for the first gene group, and only Normal patients
are positive for the 11th and 12th gene groups. The results
suggest that it is interesting to combine SSVD with some
classifiers in an elaborate out-of-sample classification study,
which, however, goes beyond the scope of the present article.
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Figure 3. Lung cancer data: comparison of the raw data matrix and the best SSVD rank-k approximations (k = 1, 2, 3).
(Only the first 5000 genes are plotted to better reveal the details.) This figure appears in color in the electronic version of
this article.
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(a) Mean expression vectors
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(b) Mean expression profiles
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Figure 4. Lung cancer data: (a) Example mean expression vectors of the subjects. (b) Example mean expression profiles of
the cancer types. This figure appears in color in the electronic version of this article.

We also analyze the data using two existing biclustering
algorithms—Plaid (Lazzeroni and Owen, 2002) and RoBiC
(Asgarian and Greiner, 2008). Technical details of the algo-
rithms can be found in Section 3.5. Both methods yield less
meaningful biclusters than SSVD especially in subject group-
ing, and give worse low-rank approximation of the data. De-
tailed results are presented in the Web Appendix through
plots analogous to Figures 1 to 3.

3. The Method
This section presents the technical details of our SSVD proce-
dure. Our presentation focuses on extracting the first SSVD
layer; subsequent layers can be extracted sequentially from
the residual matrices after removing the preceding layers.

3.1 A Penalized Sum-of-Squares Criterion
We note that the first SVD layer s1u1vT

1 is the best rank-one
matrix approximation of X under the Frobenius norm, i.e.,

(s1, u1, v1) = argmin
s ,u,v

‖X − suvT ‖2
F , (4)

where s is a positive scalar, u is a unit n-vector, and v is a
unit d-vector. To obtain sparse vectors u and v, we propose to
add sparsity-inducing penalties on u and v in the optimiza-
tion objective in (4). Specifically, we minimize with respect
to the triplet (s, u, v) the following penalized sum-of-squares
criterion,

‖X − suvT ‖2
F + λu P1(su) + λv P2(sv), (5)

where P1(su) and P2(sv) are sparsity-inducing penalty terms
whose forms will be given later, and λu and λv are two
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nonnegative penalty parameters that balance the goodness-of-
fit measure ‖X − suvT ‖2

F and the penalty terms. Two penalty
parameters are used so that different levels of sparsity can be
imposed on u and v. This is a beneficial flexibility, yet little
difficulty is added in terms of multiple parameter selection,
as shown in Section 3.3. When λu = λv = 0, the criterion (5)
reduces to (4), which obtains the plain SVD layers.

To motivate appropriate sparsity-inducing penalty terms in
(5), we make use of the idea of lasso regression (Tibshirani,
1996). For fixed u, minimization of (5) with respect to (s, v)
is equivalent to minimization with respect to ṽ = sv of

‖X − uṽT ‖2
F + λv P2(ṽ) = ‖Y − (Id ⊗ u) ṽ‖2 + λv P2(ṽ), (6)

where Y = (xT
1 , . . . , xT

d )T ∈ Rn d with xj being the jth col-
umn of X, and ⊗ being the Kronecker product. The right-
hand side of (6) is the minimization criterion of a penalized
regression with the response variable Y, the design ma-
trix Id ⊗ u, and the regression coefficient ṽ. This connection
with penalized regression naturally suggests use of the lasso
penalty P2(ṽ) =

∑d
j=1 |ṽj | in (6). Similarly, for fixed v, min-

imization of (5) with respect to (s, u) is equivalent to mini-
mization with respect to ũ = su of

‖X − ũvT ‖2
F + λv P1(ũ) = ‖Z − (In ⊗ v) ũ‖2 + λu P1(ũ), (7)

where Z = (x(1), . . . , x(n ))T ∈ Rn d , with xT
(i) being the ith row

of X. We can use the lasso penalty P1(ũ) =
∑n

i=1 |ũi | in (7).
It is important to point out that the quantities that enter the
lasso penalty are ũ and ṽ, not u and v. The reason is that u
and v are unit vectors and thus subject to scale constraints,
which in turn will invalidate the use of the lasso penalty.

In this article, we consider a broader class of penalties called
adaptive lasso penalties, as suggested by Zou (2006) and used
by Zhang and Lu (2007) and Wang, Li, and Tsai (2007),

P1(su) = s

n∑

i=1

w1, i |ui | and P2(sv) = s

d∑

j=1

w2,j |vj |, (8)

where the w1, i s and w2,j s are possibly data-driven weights.
When w1, i = w2,j = 1 for every i and j, we obtain the lasso
penalty. Following Zou (2006), the weights w2,j s can be chosen
as

w2 ≡ (w2,1, . . . , w2,d )T = |ˆ̃v|−γ 2 ,

where γ2 is a known nonnegative parameter, |ˆ̃v|−γ 2 is defined
as an operation to each component of the vector ˆ̃v, and ˆ̃v is
the ordinary least squares (OLS) estimate of ṽ, which in this
case is

{
(Id ⊗ u)T (Id ⊗ u)

}−1
(Id ⊗ u)T Y

=
(
uT x1, . . . , uT xd

)T
= XT u

(see (6) for the forms of the responses and the design matrix of
this regression). There are some natural candidates for γ2; for
example, γ2 = 0 corresponds to the lasso fit, and γ2 = 1 is sim-
ilar to the nonnegative garotte (Breiman, 1995). Zou (2006)
also suggests using γ2 = 0.5 and 2. The Bayesian information
criterion (BIC) criterion to be introduced in Section 3.3 for
selecting the penalty parameters can be used to select an ap-
propriate γ2 from a finite set of candidate values. Similarly,

w1 = (w1, i , . . . , w1,n )T can be chosen as w1 =
∣∣ ˆ̃u

∣∣−γ 1 , where
ˆ̃u is the OLS estimator of ũ, which is
{
(In ⊗v)T (In ⊗v)

}−1
(In ⊗v)T Z =

(
xT

(1)v, . . . ,xT
(n )v

)T
= Xv,

and γ1 is a nonnegative weight parameter, which can be cho-
sen similarly as γ2.

3.2 An Iterative Algorithm
The connection of SSVD to penalized regression as given in (6)
and (7) suggests alternately solving the regressions (6) and (7)
using the algorithm by Zou (2006) to obtain the SSVD lay-
ers. However, these regressions are of very large dimension.
In this subsection, we provide a much more efficient itera-
tive algorithm that effectively utilizes the special structure
of SSVD. The steps of this algorithm consist of some simple
component-wise thresholding rules.

With the adaptive lasso penalty, the minimizing objective
(5) for SSVD can be written as

‖X − suvT ‖2
F + sλu

n∑

i=1

w1, i |ui | + sλv

d∑

j=1

w2,j |vj |, (9)

where s is a positive scalar, u is a unit n-vector, and v is a
unit d-vector. We alternately minimize (9) with respect to u
and v. For fixed u, minimizing (9) is equivalent to minimizing

‖X − uṽT ‖2
F + λv

d∑

j=1

w2,j |ṽj |

= ‖X‖2
F +

d∑

j=1

{
ṽ2

j − 2ṽj (XT u)j + λv w2,j |ṽj |
}
, (10)

where ṽ = sv. Note that we can minimize (10) with respect
to each ṽ separately. The following lemma gives a closed-form
solution to such minimization problems.

Lemma 1. The minimizer of β2 − 2yβ + 2λ|β| is β̂ =
sign(y)(|y|− λ)+. This is a simple soft-thresholding rule: if
y > λ, then β̂ = y − λ; if y < −λ, then β̂ = y + λ; otherwise,
β̂ = 0.

Taking y to be the jth component of XT u and letting λ =
λv w2,j /2 in Lemma 1, we obtain that the minimizing vj of
(10) is ṽj = sign{(XT u)j }(|(XT u)j |− λv w2,j /2)+. Then we
separate out the scaling by letting s = ‖ṽ‖ and v = ṽ/s.

Similarly, for fixed u, minimizing (9) is equivalent to min-
imizing

‖X − ũvT ‖2
F + λu

n∑

i=1

w1, i |ũi |

= ‖X‖2
f +

n∑

i=1

{
ũ2

i − 2ũi (Xv)i + λu w1, i |ũi |
}
, (11)

where ũ = su. We apply Lemma 1 again to obtain that the op-
timizing ũ is ũi = sign{(Xv)i )}(|(Xv)i |− λu w1, i /2)+. Then
we separate out the scaling by letting s = ‖ũ‖ and u = ũ/s.
The minimization of (9) with respect to v and u is iterated
until convergence.
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After convergence, we set s = uT Xv and the SSVD layer is
given by suvT . The next SSVD layer can be obtained by ap-
plying the same procedure to the residual matrix X − suvT .
The process is repeated until enough numbers of SSVD layers
are obtained.

3.3 Penalty Parameter Selection
We define the degree of sparsity of the sparse singular vector
u as the number of zero components in u and similarly for
v. The degrees of sparsity of u and v are closely related to
the two penalty parameters λu and λv presented in (5) and
(9). In light of (10) and the subsequent discussion, for fixed u,
the degree of sparsity of v is the number of (XT u)j s that are
bigger than λv w2j /2. In other words, the degree of sparsity of
v is a step function of the penalty parameter λv . The same
holds between the degree of sparsity of u and λu . Therefore,
selecting the parameters λu and λv is equivalent to selecting
the degrees of sparsity.

Zou, Hastie, and Tibshirani (2007) show that, for lasso re-
gression, the number of nonzero coefficients provides an un-
biased estimate for the degree of freedom of the lasso fit, and
suggest that the BIC (Schwarz, 1978) can be used to select the
optimal number of nonzero coefficients. We apply this result
to our setting for selecting the degrees of sparsity by making
use of the connection of SSVD to penalized regression as given
in (6) and (7). For the penalized regression (6) with fixed u,
define

BIC(λv ) =
‖Y − Ŷ‖2

nd · σ̂2 +
log(nd)

nd
d̂f (λv ), (12)

where d̂f (λv ) is the degree of sparsity of v with λv as the
penalty parameter, and σ̂2 is the OLS estimate of the error
variance from the model (6). For the penalized regression (7)
with fixed v, define

BIC(λu ) =
‖Z − Ẑ‖2

nd · σ̂2 +
log(nd)

nd
d̂f (λu ), (13)

where d̂f (λu ) is the degree of freedom of u with λu as the
penalty parameter, and σ̂2 is the OLS estimate of the error
variance from the model (7).

The BICs defined above are conditional in nature. We use
them by nesting the penalty parameter selection within the
iterative algorithm given in the previous subsection. The con-
ditional parameter selection prevents using the computation-
ally more expensive simultaneous selection of two parameters.
The iterative SSVD procedure that combines model fitting
and penalty parameter selection is summarized below. Our
experience from simulation studies and real applications sug-
gests that the iterative algorithm typically converges within
5 to 10 iterations; the convergence of the selected penalty pa-
rameters is even faster.

The SSVD Algorithm

Step 1. Apply the standard SVD to X. Let {sold ,
uold , vold} denote the first SVD triplet.

Step 2. Update:
(a) Set ṽj =sign{(XT uold )j }(|(XT uold )j |−λv w2,j /

2)+, j = 1, . . . , d, where λv is the mini-

mizer of BIC(λv ) defined in (12). Let ṽ =
(ṽ1, . . . , ṽd )T , s = ‖ṽ‖, and vnew = ṽ/s.

(b) Set ũi =sign{(Xvnew )i )}(|(Xvnew )i |−λu w1, i /
2)+, i = 1, . . . , n, where λu is the min-
imizer of BIC(λu ) defined in (13). Let
ũ = (ũ1, . . . , ũn )T , s = ‖ũ‖, and unew = ũ/s.

(c) Set uold = unew and repeat Steps 2(a) and 2(b)
until convergence.

Step 3. Set u = unew , v = vnew , s = uT
newXvnew at conver-

gence.

3.4 Connection with Sparse Principal Component Analysis
PCA is one of the most commonly used unsupervised learning
tools (Jolliffe, 2002), especially for dimension reduction when
analyzing high-dimensional data. PCA identifies a small num-
ber of linear combinations of the original variables, or princi-
pal components (PCs), that can explain most of the variation
in the data. To improve the interpretability of the PCs, sparse
PCA (SPCA) methods have been proposed to yield
sparse PC loading vectors with many zero loadings. For exam-
ple, see Jolliffe, Trendafilov, and Uddin (2003); Zou, Hastie,
and Tibshirani (2006); and Leng and Wang (2009). Using the
relationship between SVD and PCA, Shen and Huang (2008)
propose to obtain the first sparse PC by minimizing

‖X − uṽT ‖2
F + λP (ṽ) subject to ‖u‖ = 1, (14)

and the subsequent sparse PCs by applying the same proce-
dure to the residual matrices. It is easy to see that the SPCA
criterion of Shen and Huang (2008) is a special case of our
SSVD criterion (5). In fact, the SPCA criterion can be ob-
tained by setting ṽ = sv with s = ‖ṽ‖ and ‖v‖ = 1, λu =
0, λv = λ, and P1(·) = P (·) in (5). However, it is important
to note that SSVD and SPCA have different objectives and
thus are different procedures. SSVD targets to detect block
structures in the data matrix and thus is a tool for biclus-
tering, while SPCA aims at identifying sparse PCs that can
describe most data variation and thus is a tool mainly for
dimension reduction, not for biclustering. Results on applica-
tion of SPCA to simulated examples clearly show that SPCA
is not suitable for biclustering (Section 4.1).

3.5 Other SVD Related Biclustering Methods
SSVD offers an SVD-based method to perform bicluster-
ing. We compare it with two existing biclustering methods,
Plaid (Lazzeroni and Owen, 2002) and RoBiC (Asgarian and
Greiner, 2008). Both methods assume that the data matrix
can be approximated by a structure that is similar to that
provided by the SVD (3).

Plaid assumes that Xij =
∑K

k=1 θij k ρik κj k =
∑K

k=1(µk +
αik + βj k )ρik κj k , where K is the number of layers (or biclus-
ters), ρik is 1 if row i is in the kth bicluster (zero otherwise),
κj k is 1 if column j is in the kth bicluster (zero
otherwise), and θij k specifies the contribution of the kth bi-
cluster. The two-way additive model on θij k estimates the ef-
fects of row i and column j. Plaid also employs an iterative
procedure to obtain the layers, and the parameters are esti-
mated by maximizing the reduction in the sum of squares. As
a comparison, SSVD assumes a multiplicative structure within
the kth bicluster; it directly balances the goodness-of-fit
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measure with the sparsity, and connects naturally with the
variable selection literature.

RoBiC starts with the best rank-1 approximation of the
data matrix obtained from applying SVD. To obtain the first
layer of biclustering, it looks at the first pair of singular
vectors. The entries of the first left singular vector are or-
dered decreasingly in absolute value and then are fit by a
hinge function (two connecting line segments). The indices to
the left of the joint of the best-fitting hinge function are in-
cluded in the first row cluster. The same procedure applies to
the first right singular vector to yield the first column clus-
ter. The rows and columns selected form the first bicluster.
RoBiC then subtracts the values of the first bicluster from
the data matrix, and repeats the same process on the resid-
ual data matrix to find the next bicluster, etc. As one can see,
RoBiC uses an ad-hoc procedure to select the biclusters, and
the hinge function model imposes an unnecessarily strict con-
straint that might limit the types of sparse structures to be
detected. This is confirmed by our simulation studies in Sec-
tion 4. SSVD is much more rigorous and allows more general
sparse structures.

Several other biclustering methods are also based on SVD,
such as the coclustering algorithm of Dhillon, Mallela, and
Modha (2003); the spectral method of Kluger et al. (2003);
the double conjugated clustering by Busygin, Prokopyev, and
Pardalos (2005); and the hierarchical clustering of Yang, Dai,
and Yan (2007). See Busygin et al. (2008) for a survey on these
methods. The hierarchical clustering of Yang et al. (2007) is
more akin to SSVD, which involves first extracting the few
leading singular vectors, before applying hierarchical cluster-
ing separately to the left and right singular vectors. Note that
the sparsity is not incorporated when the singular vectors
are obtained, and clustering is not performed together on the
samples and the variables.

4. Simulation Studies
In this section, we report two simulation studies to investigate
the performance of SSVD and to compare it with the standard
SVD, and two SVD-related biclustering methods—Plaid and
RoBiC. We also compare SSVD with the SPCA procedure of
Shen and Huang (2008) that only imposes sparse structure
on one direction, denoted as either SPCA(u) or SPCA(v).

The advantage of SSVD over SPCA is in discovering block
structures in data matrices. Additional simulation studies can
be found in the Web Appendix.

4.1 Case 1: Rank-1 Approximation
For the first simulation study, we consider a rank-1 true signal
matrix X∗. In particular, let X∗ = suvT be a 100 × 50 rank-1
matrix with s = 50 and

ũ = [10, 9, 8, 7, 6, 5, 4, 3, r(2, 17), r(0, 75)]T , u = ũ/||ũ||,

ṽ = [10,−10, 8,−8, 5,−5, r(3, 5), r(−3, 5), r(0, 34)]T ,

v = ṽ/||ṽ||,

where r(a, b) denotes a vector of length b, whose entries are
all a. Here u and v contain 25 and 16 nonzero entries, respec-
tively. A data matrix X is generated as the sum of X∗ and the
noise matrix ε, whose elements are randomly sampled from
the standard normal distribution. The simulation is repeated
100 times. The nonzero entries of X∗ take on several distinct
values, some of which are quite small. This makes the model
estimation more challenging.

For SSVD, we use BIC to choose the degree of sparsity in
each updating step, and use weight parameters γ1 = γ2 = 2 in
deciding the adaptive weight vectors w1 and w2. Such choice
of the weight parameters has been used in Zou (2006) and
is also suggested by a simulation study that is reported in
the Web Appendix. For Plaid, we use the most flexible model
discussed in Lazzeroni and Owen (2002) and choose the tuning
parameters as suggested there. For SPCA(u) and SPCA(v),
we also set the adaptive lasso weight parameter to be two,
and select the penalty parameter using BIC.

Table 1 reports the estimation results, in terms of the aver-
age number of zero elements in the estimated 100 singular vec-
tors in both directions (column 1), the average number (and
proportion) of correctly identified zeros (column 2), the aver-
age number (and proportion) of correctly identified nonzeros
(column 3), and the misclassification rate (column 4).

As one can see, SSVD performs much better than the com-
petitors. For example, in terms of correctly identifying the
true zero and nonzero entries, on average it only misclassifies
1.01% and 0.24% of the entries in u and v, respectively, as
highlighted in Table 1.

Table 1
Case 1: Comparison of the performance among SSVD, RoBiC, Plaid, SVD, SPCA(u), and SPCA(v)

Avg. # of Avg. # of correctly Avg. # of correctly Misclassification
zeros (true) identified zeros identified nonzeros rate

SSVD u 74.73 (75) 74.36 (99.15%) 24.63 (98.52%) 1.01%
v 33.88 (34) 33.88 (99.65%) 16.00 (100.0%) 0.24%

RoBiC u 90.60 (75) 75.00 (100.0%) 9.40 (37.60%) 15.60%
v 41.46 (34) 33.98 (99.94%) 8.52 (53.25%) 15.00%

Plaid u 90.65 (75) 75.00 (100.0%) 9.35 (37.40%) 15.65%
v 20.19 (34) 17.93 (52.74%) 13.74 (85.88%) 36.66%

SVD u 0.00 (75) 0.00 (0.00%) 25.00 (100.0%) 75.00%
v 0.00 (34) 0.00 (0.00%) 16.00 (100.0%) 68.00%

SPCA(u) u 74.11 (75) 73.84 (98.45%) 24.73 (98.92%) 1.43%
v 0.00 (34) 0.00 (0.00%) 16.00 (100.0%) 68.00%

SPCA(v) u 0.00 (75) 0.00 (0.00%) 25.00 (100.0%) 75.00%
v 33.79 (34) 33.79 (99.38%) 16.00 (100.0%) 0.42%
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Figure 5. Case 2: (a) Image plot of the true signal matrix X∗.
(b) Proportion of the correctly identified entries. In this plot,
the vertical axis shows the proportion of correctly classified
entries, and the horizontal axis indicates the number of layers
extracted by the various methods. (c) Frobenius distance be-
tween the true signal matrix and its estimates obtained by the
three methods. This figure appears in color in the electronic
version of this article.

Not surprisingly, SVD has the most trouble in detecting
the underlying sparse structure. As for RoBiC, it detects too
many zeroes; the problem is that the hinge model used by Ro-
BiC has trouble separating the small (in magnitude) nonzero
entries from being zero; for example, the entries of 2 in ũ or
3 and −3 in ṽ. The same holds true for Plaid. As for the
two SPCA methods, they work fine for the penalized direc-
tion; however, they fail completely to detect the sparse struc-
ture for the unpenalized direction. This shows the advantage
of SSVD over SPCA and the necessity of imposing two-way
sparse structure when needed.

4.2 Case 2: Higher Rank Approximation
In the second simulation study, the true signal matrix X∗

is a 50 by 100 matrix whose elements are given by X∗
i ,j =

Ti,j 1(|Ti,j | > 1), where

Ti,j =

{
{242 − (i − 25)2 − (j − 50)2}/100, if 26 ≤ j ≤ 75,

0, otherwise.

The image plot of X∗ (Panel (a) of Figure 5) highlights an
interesting but complex structure, where the positive entries
are red, the negative ones are blue, and the zeros are white.

This setup is more complicated for the following reasons.
Firstly, as evident in Figure 5, the true signal does not have
a multiplicative structure, which is the underlying model as-
sumed by SSVD; nor does X∗ have an additive structure. Sec-
ondly, X∗ is almost rank-2 in that its eigenvalues are almost
zero except the first two, even though its true rank is 50.

The simulation is repeated 100 times. For each simulation
run, a data matrix X is generated as the sum of X∗ and a

noise matrix ε, whose entries are randomly sampled from the
standard normal distribution. We consider only SSVD, Ro-
BiC, and the classical SVD in the current study. (SPCA is
clearly not suitable for biclustering as confirmed in the previ-
ous study. Plaid is not considered here for two reasons: first,
the result of Plaid tends to be similar to [or worse than] that
of RoBiC; second, the existing packages for Plaid either lack
an automatic procedure to output the estimation results or
only output the locations of the detected biclusters without
estimating the Plaid model.)

Panel (b) of Figure 5 plots the proportion of the correctly
identified entries (both zero and nonzero) by each method as
a function of the number of layers extracted, averaged over
the 100 simulation runs. As shown in the plot, SSVD cor-
rectly identifies the highest proportion of the entries no mat-
ter how many layers are used, and the proportion increases as
the number of layers increases; in addition, two layers (or a
rank-2 approximation) seem to be sufficient as the proportion
stabilizes afterward. On the other hand, SVD can only cor-
rectly identify the nonzero entries in X; as for RoBiC, three
or four layers are needed to peak the proportion of the cor-
rectly identified entries, and when using more layers, its de-
tection performance starts to deteriorate as it starts to fit the
noise.

Panel (c) of Figure 5 plots the Frobenius distance between
the true signal matrix and its estimate, as the number of lay-
ers used in the estimation increases. The Frobenius distance
measures how close each estimator is to the truth. We can see
that SSVD results in the closest estimator uniformly for the
numbers of layers considered. SVD performs similar to SSVD
initially, before it starts to overfit the data. RoBiC results in
a much larger distance than SSVD, and it needs more layers
to reach the same level as SSVD.

5. Conclusion and Discussion
In this article, we modified the SVD of a data matrix by im-
posing sparsity on the left and right singular vectors. The
sparsity implies selection of important rows and columns
when forming a low rank approximation to the data ma-
trix. Because the selection is performed both on the rows and
columns, our SSVD procedure can take into account potential
row–column interactions and thus provides a new tool for bi-
clustering. The effectiveness of SSVD has been demonstrated
through simulation studies and real data analysis. There are a
few potential directions for future research. First, SSVD is de-
veloped as an unsupervised learning method. It is interesting
to evaluate its usage as a dimension reduction tool prior to use
of classification methods. Second, we have focused on using
the adaptive lasso penalty. It is worthwhile to consider other
sparsity-inducing penalties, such as the smoothly clipped ab-
solute deviation (SCAD) penalty (Fan and Li, 2001), the elas-
tic net penalty (Zou and Hastie, 2005), the OSCAR penalty
(Bondell and Reich, 2008), and the adaptive grouping penalty
(Wang and Zhu, 2008). Finally, while some traditional asymp-
totic theory for penalized regression has been well developed
(Zou, 2006), developing similar results for SSVD is wide open.
For example, for biclustering, we no longer have i.i.d. samples,
and there are a number of candidates for a reasonable setup
for asymptotic analysis.
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6. Supplementary Materials
The Web Appendix is available under the Paper Informa-
tion link at the Biometrics website http://www.biometrics.
tibs.org. The lung cancer data and the SSVD programs
(in R and Matlab) are available from Haipeng Shen’s website
http://www.unc.edu/∼haipeng.
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